Continuity of liftings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liftings and Quasi-Liftings of DG Modules

We prove lifting results for DG modules that are akin to Auslander, Ding, and Solberg’s famous lifting results for modules. Introduction Convention. Throughout this paper, let R be a commutative noetherian ring. Hochster famously wrote that “life is really worth living” in a Cohen-Macaulay ring [7]. For instance, if R is Cohen-Macaulay and local with maximal regular sequence t, then R/(t) is ar...

متن کامل

Codensity Liftings of Monads

We introduce a method to lift monads on the base category of a fibration to its total category using codensity monads. This method, called codensity lifting, is applicable to various fibrations which were not supported by the categorical >>-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preo...

متن کامل

*-Liftings for Differential Privacy

Recent developments in formal verification have identified approximate liftings (also known as approximate couplings) as a clean, compositional abstraction for proving differential privacy. There are two styles of definitions for this construction. Earlier definitions require the existence of one or more witness distributions, while a recent definition by Sato uses universal quantification over...

متن کامل

Liftings of automorphisms of hypermaps

If H is a hypermap with bit set B, a voltage assignment on H is simply a map z : B → Z, where Z is a group. If Z acts on a set X, and if z is a voltage assignment on H, then one constructs a “ramified covering” Hz(X) → H such that in the category of ramified coverings of H, Hz(X) and Hz′(X) are isomorphic whenever z and z′ are equivalent voltages (but not conversely). A lifting criterion is giv...

متن کامل

Extensions and Liftings

There are three important steps in the proof the BDF theorem for essentially normal operators having essential spectrum X ⊆ C. (1) Ext(X) has a neutral element. (2) Ext(X) is a group (i.e., has inverses). (3) Ext(X) depends only on the homotopy class of X. In this lecture we will exhibit the neutral element of Ext(X) and describe the generalization of that result to noncommutative C∗-algebras (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Časopis pro pěstování matematiky

سال: 1988

ISSN: 0528-2195

DOI: 10.21136/cpm.1988.118354